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a b s t r a c t

In this paper we investigate the mechanical behavior of carbon fiber composites, where the carbon fibers are
coated with radially aligned carbon nanotubes. For this purpose we develop a general micromechanics
method for fiber composites, where fibers are coated with radially aligned microfibers (‘‘fuzzy fiber’’ com-
posites). The mechanical effective properties are computed with a special extension of the composite
cylinders method. The in-plane shear modulus is determined using an extended version of the Christensen’s
generalized self consistent composite cylinders method. The proposed methodology provides stress and
strain concentration tensors. The results of the method are compared with numerical approaches based
on the asymptotic expansion homogenization method. The combination of composite cylinders method
and Mori–Tanaka method allows us to compute effective properties of composites with multiple types of
‘‘fuzzy fibers’’. Numerical examples of composites made of epoxy resin, carbon fibers and carbon nanotubes
are presented and the impact of the carbon nanotubes length and volume fraction in the overall composite
properties is studied.

� 2012 Published by Elsevier Ltd.

1. Introduction

Since the discovery of carbon nanotubes (CNTs) by Iijima [24],
there has been a significant research effort directed towards under-
standing the source of their exceptional properties and how to take
advantage of those properties in the design of macroscale nanocom-
posites. A single-walled carbon nanotube can be viewed as a single
sheet of graphite (i.e., graphene), which has been rolled into the
shape of a tube [43]. Single walled CNTs have radii on the order of
nanometers and lengths on the order of micrometers resulting in
large aspect ratios beneficial to their use in composites [43,40].
Carbon nanotubes are reported to have an axial Young’s modulus
in the range of 300–1000 GPa, up to five times the stiffness and with
half the density of SiC fibers, in addition to having a theoretically
predicted elongation to break of 30–40% [58,59,61,57,44,13,36].

A wide variety of composites containing CNTs have been man-
ufactured [31,35,37] Polymer-wrapped and functionalized CNTs,
producing distinct interphase regions between matrix and CNTs,
are also well documented in the literature [56,28,49,30,63]. Recent
efforts focus on using CNTs in order to enhance the properties of
microscale fiber composites. In order to strengthen the interface
between the fiber and the matrix, the fibers can be coated with
CNTs before being embedded in the matrix. This technique has

been developed for carbon fibers [52,29,42,64,62], ceramic fibers
[60,9] and glass fibers [2].

Modeling of composites containing CNTs has also received
attention in recent years. Frankland et al. [16] have used molecular
dynamics to obtain the stress–strain behavior of CNTs embedded
in a polymer matrix. Liu and Chen [27] studied the mechanical
response in tension of a single CNT embedded in polymer via finite
element analysis. Odegard et al. [34] have modeled CNT compos-
ites using the equivalent continuum method in conjunction with
the Mori–Tanaka micromechanics method to obtain the effective
elastic constants for both aligned and misaligned CNTs. Spanos
and Kontsos [48] have used Monte Carlo finite element method
in order to obtain nanocomposite properties. The effects of nano-
tube waviness on the effective composite properties have been
studied by Fisher et al. [13,14] using finite element analysis in con-
junction with the Mori–Tanaka method. Buckling of CNTs within
an epoxy matrix has been considered by Hadjiev et al. [18]. Other
efforts have focused on the inclusion of less than ideal CNT adhe-
sion to the matrix in CNT composite modeling [55,15,17]. The clus-
tering of CNTs in the polymer matrix was studied in Seidel and
Lagoudas [47]. In all these modeling efforts the composite consists
of carbon nanotubes and matrix.

Herein we examine composites where carbon fibers, coated
with radially aligned carbon nanotubes, are embedded in a matrix.
These enhanced carbon fibers have the potential to improve not
only interface strength, but to provide additional functionality as
sensors by taking advantage of the multifunctional properties of
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CNTs. In the literature there are several models, which attempt to
identify the overall behavior of such composites. Kundalwal and
Ray [26] identify the mechanical response of fuzzy fiber compos-
ites using the method of materials approach, while Chatzigeorgiou
et al. [5] compute numerically the effective mechanical properties
through the asymptotic expansion homogenization method. Ray
[39] introduces a shear lag model for obtaining the behavior of
composites reinforced with carbon nanotubes-coated piezoelectric
fibers.

In the present work we investigate the effective properties of
fiber composites, where the fibers are coated with radially aligned
microfibers (‘‘fuzzy fibers’’). In order to achieve this goal, we use
the generalized self consistent composite cylinders method
[20,7,47], modified properly in order to account for the additional
interface layer between the fiber and the matrix. The proposed
methodology is utilized in numerical examples, in which carbon
fibers, coated with radially aligned carbon nanotubes, are embed-
ded in an epoxy matrix.

The structure of this paper is the following: in Section 2 we de-
scribe the characteristics of the ‘‘fuzzy fiber’’ composite and we
present the major model assumptions. Section 3 presents the mod-
ified generalized self consistent composite cylinders method. In
Section 4 we discuss how the method can be applied in the case
of mixed type ‘‘fuzzy fiber’’ composites, while Section 5 shows
some numerical examples. The conclusions of this work are sum-
marized in the final section.

2. ‘‘Fuzzy fiber’’ composites

The ‘‘fuzzy fiber’’ material system is a fiber composite (Fig. 1a),
in which the fibers are coated with radially aligned microfibers
(Fig. 1b). For modeling purposes we assume that the representative
volume element (RVE) of the ‘‘fuzzy fiber’’ composite contains
three layers: the first layer is the cylindrical fiber. The second is a
reinforced interphase (intermediate cylindrical layer) which con-
sists of cylindrical microfibers and matrix. The third layer is the
area of the pure matrix (Fig. 2). The coated fibers are arranged to
correspond to a unidirectional lamina layer, in which the fibers
are aligned in the z-direction and are well dispersed (randomly dis-
tributed) in the x–y plane (Fig. 1a). The fibers are made by isotro-
pic, or transversely isotropic linearly elastic material with the
axis of symmetry parallel to the axis of the fibers, while the mate-
rial of the matrix is assumed isotropic. The microfibers in the
reinforced interphase are assumed to be transversely isotropic
with the axis of symmetry parallel with the microfibers axis

(r direction in Fig. 1b). The idealized RVE of the reinforced inter-
phase is shown in Fig. 3. Based on the observations that (a) the
diameter of the fiber is very large compared to the diameter of
the microfibers and (b) the microfibers are normally densely
packed along the fiber interpase (small Dh in Fig. 3), we can as-
sume that the reinforced interphase behaves as a classical unidi-
rectional composite, and effectively it is a transversely isotropic
medium with the axis of symmetry parallel to the axis of microfi-
bers (i.e. in the radial direction of the fiber). Hence, we can use
micromechanics methods for composites with aligned microfibers
in determining the transversely isotropic interphase properties
[47]. In Kundalwal and Ray [26] the properties of the reinforced
interphase are represented in Cartesian coordinate system (see
Appendix A) and the effective behavior is assumed to be given by
averaging over all orientations. Such an approach leads to alter
the anisotropic nature of the reinforced interphase, which is iden-
tified as transversely isotropic material with axis of symmetry

(a) (b)
Fig. 1. Schematic of (a) the ‘‘fuzzy fiber’’ lamina layer and (b) the ‘‘fuzzy fiber’’.

Fig. 2. RVE of the ‘‘fuzzy fiber’’ material system.

Fig. 3. RVE of the reinforced interphase.
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parallel to the axis of the fiber (not the microfiber). The methodol-
ogy we propose in this work avoids such an assumption.

In the cylindrical coordinate system shown in Figs. 1b and 2,
where z is the fiber longitudinal axis, the stress–strain relations
of the matrix, the fiber and the intermediate layer (reinforced
interphase) are written
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where the indices 1, 2, 3 in the stiffness tensors denote the axes r, h,
z respectively. In the case of the unidirectional ‘‘fuzzy fiber’’ com-
posite, absence of the reinforced interphase (i.e. just fiber in matrix
lamina) leads to transversely isotropic effective medium. Moreover
we can easily show that, upon arbitrary rotation about the z axis,
the stiffness matrix of the reinforced interphase remains the same
(see Appendix A), which indicates that the quasi-cylindrically
orthotropic structure (transversely isotropic with axis of symmetry
parallel to the direction r of Fig. 2) of the reinforced interphase does
not disrupt the overall symmetry of the effective medium. This
means that the final composite material will be effectively trans-
versely isotropic, with the axis of symmetry parallel to the axis of
the fibers (the z axis). As such, the stress–strain relation of the effec-
tive unidirectional lamina in the cylindrical coordinate system is gi-
ven by
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The computation of the effective properties requires knowledge
of the mechanical response of the ‘‘fuzzy fiber’’ material system,
which ideally consists of concentric cylinders (Fig. 4). The elastic
response of homogeneous and non-homogeneous thick- or thin-
walled tubes under different boundary conditions was studied by
Chatterjee [3], Horg and Chan [21,22], Chen et al. [6], Tarn and
Wang [51], Tarn [50], Ruhi et al. [41], Hosseini Kordkheili and

Naghdabadi [23], Chatzigeorgiou et al. [4], Tsukrov and Drach
[53], Nie and Batra [32,33]. Our aim is to determine elasticity solu-
tions for a series of boundary value problems (BVPs). These BVPs
are used in conjunction with the composite cylinders method in
order to identify the effective properties of the composite, as has
been successfully implemented in the past in the case of CNT com-
posites [47].

3. Composite cylinders method

For the composite cylinders method we use the RVE of Fig. 4.
This 3 layer composite cylinder RVE (fiber, reinforced interphase,
matrix) is equivalent with an RVE for a randomly distributed,
aligned, ‘‘fuzzy fiber’’ composite (additional details are given in
[20,7,47]. The proposed approach can be extended for cases where
the number of layers are N P 3.

It the following, we will consider the cylindrical as the global
coordinate system. In cylindrical coordinates the equilibrium
equations are given by
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where (i) is the material layer (i = 1,2, . . . ,N). Assuming small defor-
mation gradients, the infinitesimal strains are expressed with re-
spect to the displacements according to the relations
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In order to use the composite cylinders method, we need to
determine admissible displacement fields which will satisfy five
specific boundary value problems. In order to do this, we have to

Fig. 4. RVE of the composite material for the composite cylinders method.
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substitute (8) into the appropriate constitutive relations (1)–(3),
and then substitute the resulting equations into (5)–(7) to get
the equilibrium equations in terms of the displacements. Next
we can apply the semi-inverse method to determine the necessary
admissible displacement fields. Then, solving the same boundary
value problems for the homogenized cylinder we can obtain the
effective properties using the direct strain energy equivalency
method. The homogenized cylinder is described by the same equa-
tions, with the difference that the (i) must be replaced by eff denot-
ing the effective material. Tsukrov and Drach [54] present a similar
approach with the above described, for the case of carbon/carbon
composites, where pyrolytic carbon cylindrically orthotropic layers
surround a fiber. In their study they obtain the effective axial
Young’s modulus, the transverse bulk modulus and the axial Pois-
son’s ratio. The admissible displacement fields they used are pre-
sented in Tsukrov and Drach [53]. In the present work we obtain
five effective properties (in-plane bulk modulus, axial shear modu-
lus, axial Young’s modulus, axial stiffness coefficient, in-plane
shear modulus) which are sufficient to describe the overall behav-
ior of the ‘‘fuzzy fiber’’ composite. The in-plane shear modulus re-
quires special treatment, since the composite cylinders method
provide only bounds. For this material property we need to use
the generalized self consistent composite cylinders method pro-
posed by Christensen [7].

In the following, we denote ri to be the external radius of each
layer, with the inner radius of the solid fiber layer denoted r0 = 0.
The length of the composite cylinder is taken as 2L. We also intro-
duce the volume average

h/i ¼ 1
V

Z
V

/ðx; y; zÞdxdydz ¼ 1
V

Z
V

r/ðr; h; zÞdr dhdz; ð9Þ

where V is the volume of the RVE.

3.1. In-plane bulk modulus

The in-plane, or plane strain bulk modulus, Keff
12 , is determined

through the application of the displacement field
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For isotropic and transversely isotropic materials with axis of sym-
metry parallel to the axis of the fiber nðiÞ1 ¼ �nðiÞ2 ¼ 1 and the dis-
placement field reduces to the expression described in Seidel and
Lagoudas [47]. DðiÞ1 and DðiÞ2 are constants which are determined from
the boundary condition (Fig. 5a)
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which enforces perfect bonding between phase layers. The volume
averaged strain energy for the composite cylinder assemblage is gi-
ven by
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The homogenized cylinder is described by the same equations, with
the difference that the (i) must be replaced by eff and neff = 1. For
the effective medium we get Deff

1 ¼ e0. Consequently the strain en-
ergy of the effective homogeneous material is written as
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Since WRVE = Weff, we get
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Here we need to mention that the effective in-plane bulk modulus
does not depend on the applied strain at the boundary as it can be
shown that DðiÞj contains e0.

3.2. Axial shear modulus

The axial shear modulus, leff
23 ¼ Ceff

44 , is determined through the
application of the displacement field
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For isotropic and transversely isotropic materials with axis of sym-
metry parallel to the axis of the fiber nðiÞ1 ¼ �nðiÞ2 ¼ 1 and the dis-
placement field reduces to the expression described in Seidel and
Lagoudas [47]. DðiÞ1 and DðiÞ2 are constants which are determined from
the boundary condition (Fig. 5b)

uðNÞz ðrN ; hÞ ¼ 2e0rN cos h; ð20Þ

the condition for bounded displacements at the origin
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The volume averaged strain energy of the composite is given by
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Fig. 5. BVP for (a) in-plane bulk modulus and (b) axial shear modulus.
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The homogenized cylinder is described by the same equations, with
the difference that the (i) must be replaced by eff and neff = 1. For
the effective medium we get Deff

1 ¼ 2e0 and
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3.3. Axial Young’s modulus and axial stiffness component

The axial Young’s modulus, Eeff
3 and the axial stiffness compo-

nent, Ceff
33 , are determined through the application of the displace-

ment field
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uðiÞh ¼ 0; uðiÞz ¼ e0z; for i ¼ 1; . . . ;N;

with
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For isotropic and transversely isotropic materials with axis of sym-
metry parallel to the axis of the fiber nðiÞ1 ¼ 1. Relative to an isotropic
or transversely isotropic interphase with aligned symmetry axis
with the overall symmetry axis [47], the reinforced interphase
behavior introduces a new term, K(i)r, which is needed to satisfy
the equilibrium Eq. (5). K(i) takes a non-zero value only in the case
where the material has different radial and circumferential behav-
ior. It also carries the e0 from the boundary condition (Fig. 6) which
permeates into the solution of the form for uðjÞr . The constants DðiÞ1

and DðiÞ2 ; i ¼ 1; . . . ;N are determined from the continuity conditions
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the condition for bounded displacement at the origin

Dð1Þ2 ¼ 0; ð29Þ

and the boundary conditions. The displacement uz is also trivially
enforced. For the axial Young’s modulus, the lateral surface is trac-
tion free in the tension test

rðNÞrr ðrNÞ ¼ 0; ð30Þ

while for the axial stiffness component the lateral surface is con-
strained in the stiffness test

uðNÞr ðrNÞ ¼ 0: ð31Þ

For the composite we have

WRVE ¼ 1
2

rðiÞrr e
ðiÞ
rr þ rðiÞhhe
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hh þ rðiÞzz e

ðiÞ
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; ð32Þ

where

KðiÞ1 ¼ CðiÞ13K
ðiÞ þ CðiÞ23K

ðiÞ þ CðiÞ33e0;

KðiÞ2 ¼ CðiÞ11K
ðiÞ þ CðiÞ12K

ðiÞ þ CðiÞ13e0; ð33Þ

and

KðiÞj ¼
r

1þnðiÞ
j

i
�r

1þnðiÞ
j

i�1

1þnðiÞ
j

; nðiÞj – � 1;

lnðriÞ � lnðri�1Þ; nðiÞj ¼ �1:

8>>><
>>>:

ð34Þ

The homogenized cylinder is described by the same equations with
the layers 1 and N, with the difference that the (i) must be replaced
by eff.

For the effective medium, the boundary conditions for the axial
Young’s modulus give Deff

1 ¼ �Ceff
13e0 Ceff

11 þ Ceff
12

� �.
and

Weff ¼ 1
2

reff
rr eeff

rr þ reff
hh eeff

hh þ reff
zz eeff

zz

� �
¼ 1

2
Eeff

3 e2
0: ð35Þ

Since WRVE = Weff, we get
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For the effective medium, the boundary conditions for the axial
stiffness component give Deff

1 ¼ 0 and

Weff ¼ 1
2

reff
rr eeff

rr þ reff
hh eeff

hh þ reff
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� �
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2
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0: ð37Þ

Since WRVE = Weff, we get

Ceff
33 ¼

2
e2

0r2
N

PN
i¼1

KðiÞ1 e0þ2KðiÞ2 KðiÞ
� �r2

i � r2
i�1

2
þ2e0

P2
j¼1

DðiÞj CðiÞ23þnjiC
ðiÞ
13

� �
KðiÞj

"

þ
P2
j¼1

CðiÞ22

nðiÞj

þCðiÞ12

 !
DðiÞj DðiÞj r

2nðiÞ
j

i � r
2nðiÞ

j

i�1

� �
þ2KðiÞ r

1þnðiÞ
j

i � r
1þnðiÞ

j

i�1

� �� �#
: ð38Þ

3.4. In-plane shear modulus

The composite cylinders method proposed by Hashin Rosen
[20] can provide only bounds for the in-plane shear modulus leff

12 .
For this reason we will use the generalized self consistent compos-
ite cylinders method, proposed by Christensen [7]. In this case, an
additional layer (layer N + 1) is added, representing the effective
medium with external radius rN+1 ?1. The admissible displace-
ment field for this case is described by the equations

(a) (b)
Fig. 6. BVP for (a) axial Young’s modulus and (b) axial stiffness coefficient.
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uðiÞr ¼
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uðjÞz ¼ 0; for i ¼ 1; . . . ;N; j ¼ 1; . . . ;4; ð39Þ

with

aðiÞj ¼ 2
CðiÞ22 þ CðiÞ66 � nðiÞj CðiÞ12 þ CðiÞ66

� �
CðiÞ22 þ 4CðiÞ66 � nðiÞj

� �2
CðiÞ11

; for i ¼ 1; . . . ;N;

j ¼ 1; . . . ;4: ð40Þ

The exponents nðiÞj ; j ¼ 1; . . . ;4 are the solutions of the polynomial

An4 � Bn2 þ C ¼ 0; ð41Þ

where

A ¼ CðiÞ11CðiÞ66;

B ¼ CðiÞ11 þ CðiÞ22 � 8CðiÞ12

� �
CðiÞ66 þ 4 CðiÞ11CðiÞ22 � CðiÞ12

� �2
� �

;

C ¼ 9CðiÞ22CðiÞ66:

ð42Þ

The nðiÞ1 ; nðiÞ2 are the positive solutions, while the nðiÞ3 ; nðiÞ4 are the
negative solutions. If z is the axis of symmetry for the layer (i.e.
the axis of the fiber), these equations reduce to the equations given
in Seidel and Lagoudas [47], therefore the extra complication is di-
rectly attributed to the difference in material symmetry orientation
of the interphase layer, which is transversely isotropic with axis of
symmetry parallel to the radial direction (i.e. the direction of the
microfibers).

The external boundary conditions are already included in the
displacement field of the N + 1 layer. We also need the conditions
ensuring boundness at the origin

Dð1Þ3 ¼ Dð1Þ4 ¼ 0; ð43Þ

and the continuity conditions

uðiÞr rið Þ ¼ uðiþ1Þ
r ðriÞ; uðiÞh rið Þ ¼ uðiþ1Þ

h ðriÞ;
rðiÞrr ðriÞ ¼ rðiþ1Þ

rr ðriÞ; rðiÞrh ðriÞ ¼ rðiþ1Þ
rh ðriÞ; for i ¼ 1; . . . ;N:

ð44Þ

Finally, the strain energy equivalency is writtenZ 2p

0
rðNþ1Þ

rr ueff
r þ rðNþ1Þ

rh ueff
h � reff

rr uðNþ1Þ
r þ reff

rh uðNþ1Þ
h

� �h i
r¼rN

dh ¼ 0:

ð45Þ

Eq. (45) is the interaction (surface) energy form converted from the
volume averaged form. The surface energy form arises from the
strain energy equality between the composite and the homogenized
medium [7, pp. 55–56] and it provides easier computations than
using directly the stored strain energy equivalency.

The displacement field of the effective medium is

ueff
r ¼

r sinð2hÞ
2leff

12

; ueff
h ¼

r cosð2hÞ
2leff

12

; ueff
z ¼ 0: ð46Þ

The strain energy equivalency leads to the final condition that

DðNþ1Þ
4 ¼ 0; ð47Þ

from which we solve for leff
12 .

It needs to be mentioned that, even though displacement fields
for similar boundary value problems with the one of Fig. 7 have
been introduced in the literature, this is the first time that the
in-plane shear modulus is obtained using the displacement field
of Eq. (39) and the Christensen’s approach.

The generalized self consistent composite cylinders method can
also be used to obtain the other effective properties (in plane bulk
modulus, axial shear modulus, axial Young’s modulus and axial
stiffness component). In these cases, iterative schemes need to be
employed, since the generalized self consistent composite cylin-
ders method leads to nonlinear equations. The values of these
properties, obtained by the later method, are in very good agree-
ment with the values obtained by the composite cylinders method
[46], indicating that the luck of use of the effective layer in obtain-
ing these properties is an acceptable simplification.

3.5. Other material properties

The effective axial Poisson’s ratio is computed from the relation

meff
23 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ceff

33 � Eeff
3

4Keff
12

vuut : ð48Þ

The effective in-plane Poisson’s ratio is computed from the
relation

meff
12 ¼

Keff
12 � leff

12 � 4 meff
23


 �2leff
12 Keff

12=Eeff
3

Keff
12 þ leff

12 þ 4 meff
23


 �2leff
12 Keff

12=Eeff
3

: ð49Þ

The effective in-plane Young’s modulus is computed from the
relation

Eeff
1 ¼

4leff
12 Keff

12

Keff
12 þ leff

12 þ 4 meff
23


 �2leff
12 Keff

12=Eeff
3

: ð50Þ

The effective properties described in this section are related
with unidirectional ‘‘fuzzy fiber’’ composites. One can identify
the effective properties of the ‘‘fuzzy fiber’’ alone, using the gener-
alized self consistent composite cylinder method, by considering
almost zero matrix layer (layer with N = 3). This information is nec-
essary if we need the ‘‘fuzzy fiber’’ properties for use in other
methods such as the Mori–Tanaka for addressing composites with
multiple inhomogeneity types.

4. Effective properties of composites with multiple types of
‘‘fuzzy fibers’’

In the previous sections we dealt with unidirectional ‘‘fuzzy
fiber’’ composites, when only one type of ‘‘fuzzy fiber’’ is consid-
ered. However, in order to consider more complicated structures

Fig. 7. Generalized self consistent method for in-plane shear modulus.
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(for instance, ‘‘fuzzy fibers’’ with different orientations or different
materials for the fibers, ‘‘fuzzy fibers’’ with various CNT concentra-
tions), the knowledge of the effective properties of the ‘‘fuzzy fiber’’
itself must be combined with the knowledge of the strain or stress
concentration tensors.

4.1. General relations for composites with multiple ‘‘fuzzy fiber’’ types

In the case of multiple ‘‘fuzzy fiber’’ types, each type defines a
different phase in the composite. Assuming J ¼ 1;2; . . . ;D distinct
fiber types, with volume fractions cJ and stiffness tensors CJ

ijkl, the
effective behavior of the final composite is identified by the
relation

Ceff
ijkl ¼ Cm

ijkl þ
PD
J¼1

cJ CJ
ijop � Cm

ijop

� �
AJ

opkl; ð51Þ

where AJ
opkl is the strain concentration tensor of each phase and the

index m denotes the matrix phase. The relation that holds for the
volume fractions is

cm þ
PD
J¼1

cJ ¼ 1: ð52Þ

The composite cylinders method introduced in the previous
section allows us to compute the stress concentration tensor of
aligned ‘‘fuzzy fiber’’ composites. The components of the stress
concentration tensor BJ

ijkl connect the volume average of the stress
rTotal

ij over the three material layers (i.e, the fiber, the reinforced
interphase and the matrix) with the volume average of the stress
rJ

ij over only the fiber and the reinforced interphase through the
relation

rJ
ij

D E
¼ BJ

ijkl rTotal
kl

� �
: ð53Þ

It should be noted that the stress concentration tensor is most
conveniently applied in Cartesian coordinates. So the components
of stresses in Eq. (53) must be expressed in the Cartesian coordi-
nate system. The analytical forms of the stress concentration
expressions (volume averages of rJ

ijkl and rTotal
ijkl ) for all the solved

boundary value problems are presented in Appendix C.
Since in four out of five properties we use the composite cylin-

ders method as opposed to the generalized self consistent compos-
ite cylinders method, the method we propose is quasi-dilute in that
the interactions between the various types or orientations of fibers
are not directly accounted for.1 This can be adjusted for by taking
the computed composite cylinders concentration tensor components
to be the dilute concentration tensor components (the difference be-
tween the quasi-dilute and the dilute is only on the in-plane shear
term). The dilute concentration tensor HJ

ijkl of a ‘‘fuzzy fiber’’ compos-
ite can be identified using the composite cylinders method and con-
sidering very large matrix volume fraction (third layer). The obtained
tensor relates the stress in the inhomogeneity to the uniform stress
in the far field applied traction.

Using five appropriate boundary value problems and geometric
symmetry considerations, the components of the dilute stress
concentration tensor can be uniquely defined from the proposed
composite cylinders method. However, the sets of equations pro-
duced by the in-plane bulk modulus test and the axial stiffness
component are not linearly independent, and therefore an addi-
tional boundary value problem to those described above is needed.
This additional problem, the transverse extension test, is presented
in Appendix B.

The dilute strain concentration tensor GJ
ijkl is computed from the

dilute stress concentration tensor HJ
ijkl the ‘‘fuzzy fiber’’ stiffness

tensor CJ
ijkl and the matrix stiffness tensor Mm

ijkl through the relation

GJ
ikjl ¼ CJ

ikop

� ��1
HJ

opqrC
m
qrjl: ð54Þ

The properties CJ
ijkl of the ‘‘fuzzy fiber’’ are computed from the com-

posite cylinders method, imposing essentially the two phase model
of carbon fiber and reinforced interphase to make an effective layer.

The computed dilute strain concentration tensor can be used in
a Mori–Tanaka method (in order to allow for interactions) to iden-
tify the effective properties of a composite with mixed ‘‘fuzzy fi-
ber’’ types. Especially for composites with ‘‘fuzzy fibers’’ of
different orientation, Mori–Tanaka is a very efficient and easily
implemented micromechanics method, provided one accounts
properly for the interactions of the fibers with different orientation
(for further details see [11,46]).

According to the Mori–Tanaka method, the strain concentration
tensor AJ

ijkl for each phase in aligned fiber composites is computed
by the relation [38]

AJ
ijkl ¼ GJ

ijmn cmImnkl þ
PD
J¼1

cJGJ
mnkl

" #�1

: ð55Þ

Combining (51) and (55), we obtain the effective stiffness tensor for
aligned ‘‘fuzzy fiber’’ composites,

Ceff
ijkl ¼ Cm

ijkl þ
PD
J¼1

cJ CJ
ijop � Cm

ijop

� �
GJ

opmn cmImnkl þ
PD
J¼1

cJGJ
mnkl

" #�1

: ð56Þ

When the ‘‘fuzzy fibers’’ have different orientation, the strain con-
centration tensor AJ

ijkl for each phase is computed by the relation
[11,46]

AJ
ijkl ¼ QJ

iaQ J
jbQ J

mcQ J
ndGJ

abcd cmImnkl þ
PD
J¼1

cJQ J
meQ J

nf Q
J
kgQ J

lhGJ
efgh

" #�1

;

ð57Þ

where QJ
ij is the rotation tensor of the fiber. Combining (51) and

(57), we obtain the effective stiffness tensor

Ceff
ijkl ¼ Cm

ijkl þ
PD
J¼1

cJ CJ
ijop � Cm

ijop

� �
Q J

oaQ J
pbQ J

mcQJ
ndGJ

abcd

� cmImnkl þ
PD
J¼1

cJQJ
meQJ

nf QJ
kgQJ

lhGJ
efgh

" #�1

: ð58Þ

4.2. Special cases of composites

Based on the relations described in the previous subsection, we
can provide expressions of the effective properties for special cases
of composites with ‘‘fuzzy fibers’’.

4.2.1. Aligned fiber composites with one ‘‘fuzzy fiber’’ type
In the case of aligned fiber composites with only one type of

‘‘fuzzy fibers’’ the effective behavior is directly computed by the
proposed composite cylinders method. Alternatively, using the
Mori–Tanaka method, the effective stiffness tensor is identified
by the relation

Ceff
ijkl ¼ Cm

ijkl þ c Cf
ijop � Cm

ijop

� �
Gf

opmn ð1� cf ÞImnkl þ cf Gf
mnkl

h i�1
; ð59Þ

where the indices f and m denote the ‘‘fuzzy fiber’’ and the matrix
respectively.

1 In [46] it was observed that the generalized self consistent composite cylinders
and composite cylinders methods yield the same effective properties and concentra-
tion tensors for aligned fiber composites. So, for aligned composites, composite
cylinders is a very good approximation of the generalized self consistent composite
cylinders concentration tensor components.
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4.2.2. Composites with randomly oriented ‘‘fuzzy fibers’’
In the case of composites with random orientation of the fibers,

the knowledge of the concentration tensors for composites with
aligned fibers is sufficient in order to use the Mori–Tanaka method
(details are given in [11,46]. The actual concentration tensor of the
phases is provided through a careful averaging of the dilute con-
centration tensors for aligned fiber composites over all possible
orientations. The effective stiffness tensor of a composite with ran-
domly oriented ‘‘fuzzy fibers’’ is given by [11]

Ceff;ran
ijkl ¼ Cm

ijkl þ Cf
ijop � Cm

ijop

� �
Gf

opqr

n on o
ð1� cf ÞIqrkl þ Gf

qrkl

n on oh i�1
;

ð60Þ

where {{/}} denotes averaging of function / over all possible orien-
tations and cf is the fibers volume fraction.

5. Numerical examples

The numerical examples presented in this section are motivated
by the experiments presented in [42]. T650 carbon fibers with
diameter D = 5 lm are coated with radially aligned hollow carbon
nanotubes of d = 2 lm length (Fig. 1 in [42]). The CNTs have inter-
nal radius 0.51 nm and external radius 0.85 nm. The ‘‘fuzzy fibers’’
are embedded in EPIKOTE 862 resin. The reinforced interphase
contains CNTs with average volume fraction 42.17%.

For the effective properties of the reinforced interphase, we use
the procedure described in Seidel and Lagoudas [47]. The single
walled CNTs have the properties of graphite. The reinforced inter-
phase is assumed to behave like a reinforced interphase with
aligned CNTs and its effective properties can be obtained using
the generalized self consistent composite cylinders method. In this
approach we assume that there is perfect bonding between the
CNTs and the resin. Esteva Spanos [12] have shown through
micromechanics methods that the imperfect bonding affects the
composite behavior, especially at high CNT volume fractions. In
case that we need to account for the imperfect bonding between
the two materials, we have to consider appropriate interfacial con-
ditions, like jump conditions in displacements or tractions.

With regard to the carbon fibers, we consider in this study that
they behave as transversely isotropic materials. The mechanical
properties of the carbon fibers, the resin and the CNTs are shown
in Table 1, while the effective properties of the reinforced inter-
phase are shown in Table 2. In the current modeling we have as-
sumed that the CNTs and the carbon fiber are perfectly bonded.
It is known though from several studies that there is usually imper-
fect bonding between the grown CNTs and the carbon fibers which
influences the load transfer between the fibers and the matrix
[52,42]. This imperfect bonding has not been quantified, however,
and we choose the perfect bonding assumption as an upper bound
estimate under the best possible conditions.

In order to check the validity of the proposed method, the re-
sults are compared with the effective properties obtained by a
numerical method based on the asymptotic expansion homogeni-
zation method [45,1,25,8]. The asymptotic expansion homogeniza-
tion requires a periodic unit cell described in Cartesian coordinate
system. The equivalent unit cell for transversely isotropic effective
medium is described by a hexagonal structure (Fig. 8a). The pro-
gram we used for the numerical results is the COMSOL Multiphys-
ics software, using the 2D mesh shown in Fig. 8b. The periodicity in
the unit cell is imposed by applying the same displacement field on
opposite sides of the hexagon (Fig. 8b). For the purposes of the
numerical analysis, we used quadratic Lagrange finite elements.
The effective properties of the composite are obtained from the
averaged stresses in the unit cell.

In Fig. 9 we show the evolution of the effective properties of the
‘‘fuzzy fibers’’ composite with the increase of the volume fraction
of the carbon fibers, maintaining constant reinforced interphase
thickness. The large size of the reinforced interphase does not al-
low the carbon fiber volume fraction to exceed 35%, before rein-
forced interphases of neighboring carbon fibers come into
contact with one another. The maximum carbon fiber volume frac-
tion (close to 25%) presented in Fig. 9 corresponds to 80% volume
fraction of ‘‘fuzzy fiber’’ (carbon fiber plus reinforced interphase).
As we can observe, the transverse shear modulus and the axial
shear modulus are very close for all the volume fractions (despite
the fact that this does not hold for the carbon fiber), which is
due to the good transverse shear behavior that the intermediate
layer has. For high volume fractions, transverse Young’s modulus
and bulk modulus increase significantly. The results obtained by
the numerical method agree very well with the effective properties
computed with the proposed composite cylinders method. Small
deviations are observed for high volume fractions of carbon fibers.
The good agreement between the analytical and the numerical re-
sults is consistent with similar observations for carbon nanotube
composites [47,19].

The proposed method allows the computation of the strain con-
centration tensor of a ‘‘fuzzy fiber’’ composite, according to the
procedure described in the previous section. Keeping the same
dimensions for the carbon fibers and the CNTs and for various vol-
ume fractions of the carbon fibers, several terms of the strain con-
centration tensor are presented in Fig. 10. For comparison reasons,

Table 1
Mechanical properties of constituents.

fiber: T650 carbon fiber (2.5 lm radius) [10]

Axial Young’s modulus 241 GPa
Transverse Young’s modulus 14.5 GPa
Axial shear modulus 22.8 GPa
Transverse shear modulus 4.8 GPa
Axial Poisson’s ratio 0.27

Matrix: EPIKOTE 862 resin
Young’s modulus 3 GPa
Poisson’s ratio 0.3

Microfibers: CNTs
Young’s modulus E 1100 GPa
Poisson’s ratio 0.14

Table 2
Mechanical properties of reinforced interphase.

Reinforced interphase (2 lm thickness)

Axial Young’s modulus E33 7.01 GPa
Transverse Young’s modulus E11 298.64 GPa
Axial Shear modulus l23 2.52 GPa
Transverse shear modulus l12 2.81 GPa
Bulk modulus K23 5.76 GPa

(b)(a)
Fig. 8. (a) Unit cell of the ‘‘fuzzy fiber’’: 1 carbon fiber (red), 2 reinforced interphase
(yellow) and 3 resin (blue). (b) Finite element mesh of the unit cell.
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we also present in the same diagrams the strain concentration
tensor components for a carbon fiber composite. The results indi-
cate the significant increase of the shear terms in the strain con-
centration tensor due to the presence of the reinforced
interphase layer. For 60% ‘‘fuzzy fiber’’ volume fraction, the axial

shear and the transverse shear terms have an increase of 445%
and 41% respectively compared to the case of a carbon fiber com-
posite. We also observe that at very low volume fractions, below
3%, the transverse shear term is slightly lower for the ‘‘fuzzy fiber’’
composite (Fig. 10b). This is perhaps an approximation error due to
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Fig. 9. Mechanical properties of the aligned ‘‘fuzzy fiber’’ composite as a function of the carbon fibers volume fraction. The axial and the transverse properties (solid lines)
from the proposed method are compared with FEM results (square points). The thickness of the reinforced interphase is 2 lm.
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Fig. 10. Strain concentration tensor components for aligned ‘‘fuzzy fiber’’ (FF) composite and carbon fiber (CF) composite.
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the use of the quasi-dilute stress concentration tensor, which dif-
fers from the dilute stress concentration tensor only on the trans-
verse shear term.

The advantages of the reinforced interphase to the behavior of
the composite are represented in Fig. 11. In this Figure we show
comparisons of effective properties between ‘‘fuzzy fiber’’ and
carbon fiber composites with the same carbon fiber volume
fraction. The reinforced interphase does not change the axial prop-

erties (Fig. 11a) but enhances significantly the transverse proper-
ties. For carbon fiber volume fraction close to 25%, we observe
more than 200% increase in transverse Young’s modulus and the
transverse shear modulus. The enhanced performance of the ‘‘fuz-
zy fiber’’ composite relative to the carbon fiber is attributed to the
high axial stiffness of the CNTs which are oriented in the transverse
direction of the ‘‘fuzzy fiber’’ composite. Even in the case that the
reinforced interphase is not present and the carbon fiber diameter
is extended to provide the same fiber volume fraction with the
‘‘fuzzy fiber’’, the transverse properties remain slightly better for
the ‘‘fuzzy fiber’’ composite. For instance, for fiber volume fraction
80%, the effective transverse Young’s modulus is 9.58 GPa for the
carbon fiber and 10 GPa for the ‘‘fuzzy fiber’’ composite.

Similar results are obtained even if the ratio between carbon fi-
ber diameter to ‘‘fuzzy fiber’’ diameter changes. In Fig. 12 we pres-
ent the transverse shear modulus of a carbon fiber and a fuzzy fiber
composite, when the reinforced interphase layer is small, com-
pared to the carbon fiber (5 lm the diameter of the carbon fiber
and 0.5 lm the CNT size). The results (compared to these of
Fig. 11d) show similarity, with only a shift in the volume fraction
axis. These results clearly show that the ratio between the length
of carbon nanotubes and the radius of carbon fiber does not alter
the general characteristics in the behavior of the ‘‘fuzzy fiber’’
composite.
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In order to investigate more thoroughly the effect of the rein-
forced interphase in the mechanical response of the ‘‘fuzzy fiber’’
composite, we perform two cases of parametric analyses.

In the first case we examine the effect of the CNTs volume frac-
tion in the reinforced interphase on the effective behavior of the
composite. Keeping the radii of the carbon fiber, the reinforced
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interphase and the matrix constant (i.e. holding on composite
cylinder scale the volume fractions constant), while varying the lo-
cal CNT volume fraction within the reinforced interphase, the re-
sults are shown in Fig. 13. With regard to the transverse
properties, important increase appears only at small CNTs volume
fractions. For 10% CNTs volume fraction, the transverse Young’s
modulus and the transverse shear modulus increase by 55% and
50% respectively compared to no CNTs in the reinforced interphase
layer.

In the second case we examine the effect of the length of the
CNTs (and eventually the thickness of the reinforced interphase)
on the effective behavior of the composite. Keeping the carbon fiber
size and the external radius of the matrix constant (i.e. the carbon
fiber volume fraction constant), while the reinforced interphase

and matrix volume fraction vary, the results are shown in Fig. 14,
where we observe that the transverse properties are more affected
from the CNT length than the axial properties.

Next, we investigate the effective properties of ‘‘fuzzy fiber’’
composites, where the ‘‘fuzzy fibers’’ have random orientation in-
side the resin (chopped fibers with high aspect ratio). The obtained
effective properties in this case are isotropic, as we should expect,
and they are presented in Fig. 15. The presence of the ‘‘fuzzy fibers’’
enhances the properties of the composite, leading to an increase
(compared with a randomly oriented carbon fiber composite) of
both the Young’s modulus and the shear modulus. For 20% carbon
fiber volume fraction, the presence of the CNTs in the reinforced
interphase provide an increase of 45% in both the effective Young’s
modulus and the effective shear modulus. The gain however in the
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Fig. 15. Comparison of mechanical properties between randomly oriented ‘‘fuzzy fiber’’ (FF) and carbon fiber (CF) composites. The CNTs volume fraction in the reinforced
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effective behavior would be significantly greater if the CNTs were
randomly oriented and well dispersed in the whole matrix instead
of concentrated in a radial orientation in the reinforced interphase.
Specifically, the 42.2% volume fraction of CNTs in the reinforced
interphase (whose volume fraction in the total composite is 45%),
when dispersed in the entire epoxy matrix, corresponds to
23.75% volume fraction of CNTs. By using a combination of the
composite cylinders and the Mori–Tanaka methods, as proposed
in Seidel and Lagoudas [47], we can obtain the effective behavior
(which is isotropic) of the reinforced nanocomposite with CNTs
randomly distributed in the matrix. Then, the randomly oriented
carbon fibers are embedded in the reinforced with CNTs matrix
and the effective properties of the new composite are computed
from Eq. (58). For 20% carbon fiber volume fraction, the presence
of the CNTs in the entire matrix provide an increase of approxi-
mately 125% in both the effective Young’s modulus and the
effective shear modulus, compared to the randomly oriented fiber
composite with CNTs only attached to the carbon fiber. However,

this is only a hypothetical case, since it is impossible to fabricate
such large well-dispersed volume fractions (viscosity limitations)
of CNTs in a polymeric matrix. Moreover, the ‘‘fuzzy fiber’’ material
systems are designed to improve the interfacial conditions be-
tween carbon fibers and resin and corresponding fracture proper-
ties of the composite.

The parametric analysis performed for the aligned fiber com-
posites is now extended to the case of randomly oriented fiber
composite.

First, keeping the radii of the carbon fiber, the reinforced inter-
phase and the matrix constant (i.e. holding on composite cylinder
scale the volume fractions constant), while varying the local CNT
volume fraction within the reinforced interphase, the results are
shown in Fig. 16. In this Figure, the Young’s and shear moduli are
normalized with the corresponding values for a composite with
no reinforced interphase layer.

Finally, keeping the carbon fiber size and the external radius of
the matrix constant (i.e. the carbon fiber volume fraction constant),
while the reinforced interphase and matrix volume fraction vary,
the results are shown in Fig. 17. Again, the Young’s and shear mod-
uli are normalized with the corresponding values for a composite
with no reinforced interphase layer.

In both cases the obtained results present the same pattern
with the aligned fiber composite: both the Young and the shear
moduli present important increase for small CNTs volume frac-
tions. On the other hand, the increase of the CNT length causes
smooth increase in all properties.

6. Conclusions

This paper proposes an extension of the composite cylinders
method which allows us to evaluate the effective properties and
the concentration tensors of fiber composites, when the fibers
are coated with radially aligned nanofibers (‘‘fuzzy fibers’’). The
in-plane shear modulus is computed using an extension of the
Christensen’s self consistent composite cylinders method. The
developed methodology provides information about the stress
and strain concentration tensors, which are essential in sensor
applications. Results of the proposed method are compared with
numerical methods and showed very good accuracy. In order to as-
sist the design of ‘‘fuzzy fiber’’ composites, the current paper pre-
sents extensive parametric studies for composites with aligned
and randomly oriented ‘‘fuzzy fibers’’, made of carbon fibers and
carbon nanotubes (CNTs), including the effects of CNTs volume
fraction and length. The results of the analyses indicate that the
coated carbon fibers with CNTs show improved transverse proper-
ties compared to uncoated carbon fibers. The CNTs volume frac-
tion, even in small values, has a significant impact on these
properties.
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Fig. 18. Orientation indifference of ‘‘fuzzy fiber’’ composite.

Fig. 19. BVP for transverse extension test.
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Appendix A. Orientation indifference of ‘‘fuzzy fiber’’ composite

In this appendix we compute the mechanical properties of each
layer individually at an orthogonal Cartesian coordinate system
whose x0 axis has an arbitrary angle h with the horizontal axis
(Fig. 18). Since the fiber and the matrix are, at most, transversely
isotropic with axis of symmetry parallel to the axis of fiber, their
mechanical properties do not depend on the angle h and they are
the same with these presented in Eqs. (1) and (2). The reinforced
interphase presents quasi-cylindrically orthotropic behavior, in
the sense that it is transversely isotropic with axis of symmetry
parallel to the radial direction (Fig. 2). Eq. (3) represents the stiff-
ness tensor of the reinforced interphase in cylindrical coordinates.
We can pass from cylindrical to Cartesian coordinate system by
proper rotation with respect to the angle h of Eq. (3). Then we have

rint
x0x0

rint
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z0z0

rint
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x0z0

rint
x0y0
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The representation of the stiffness tensor C0 takes at any angle h
similar form in Cartesian coordinates. For instance, for every h,
the stiffness tensor at a local position y0 = 0 (position on the axis
x0) takes the form

C 0 ¼

Cint
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12 Cint
12 0 0 0

Cint
12 Cint

22 Cint
23 0 0 0

Cint
12 Cint

23 Cint
22 0 0 0

0 0 0 Cint
22�Cint

23
2 0 0

0 0 0 0 Cint
66 0

0 0 0 0 Cint
66

0
BBBBBBBBBB@
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which does not depend on the angle h. Due to the circular structure
of the reinforced interphase, its average behavior (average stiffness
tensor over all angles h) is transversely isotropic with axis of sym-
metry parallel to the axis of the fiber (axis z of Fig. 1).

Appendix B. Transverse extension test

In order to compute the necessary fifth set of equations for the
dilute stress concentration tensor for an aligned ‘‘fuzzy fiber’’ com-
posite, we need to solve an additional boundary value problem, the
transverse extension test. The displacement field for the transverse
extension test is a superposition of the displacement fields of a) the
in-plane bulk modulus and b) the in-plane shear modulus.

We assume the displacement field

uðiÞr ¼
P4
j¼1

DðiÞj rnðiÞ
j cosð2hÞ þ

P6
j¼5

DðiÞj rnðiÞ
j ;

uðiÞh ¼
P4
j¼1

aðiÞj DðiÞj rnðiÞ
j sinð2hÞ;

uðiÞz ¼ 0; for i ¼ 1; . . . ;N;

ðB:1Þ

with

aðiÞj ¼ �
1
2

CðiÞ22 þ 4CðiÞ66 � nðiÞj

� �2
CðiÞ11

CðiÞ22 þ CðiÞ66 � nðiÞj CðiÞ12 þ CðiÞ66

� � ; for i ¼ 1; . . . ;N;

j ¼ 1; . . . ;4; ðB:2Þ

and nðiÞj ; j ¼ 1; . . . ;4, the solutions of the polynomial

An4 � Bn2 þ C ¼ 0; ðB:3Þ

where

A ¼ CðiÞ11CðiÞ66;

B ¼ CðiÞ11 þ CðiÞ22 � 8CðiÞ12

� �
CðiÞ66 þ 4 CðiÞ11CðiÞ22 � CðiÞ12

� �2
� �

;

C ¼ 9CðiÞ22CðiÞ66:

ðB:4Þ

The nðiÞ1 ; nðiÞ2 are the positive solutions, while the nðiÞ3 ; nðiÞ4 are the
negative solutions. Moreover

nðiÞ5 ¼ �nðiÞ6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðiÞ22=CðiÞ11

q
: ðB:5Þ

The boundary conditions of the problem are shown in Fig. 19 (see
also [47]). We also need the conditions ensuring bounding at the
origin
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Dð1Þ3 ¼ Dð1Þ4 ¼ Dð1Þ6 ¼ 0; ðB:6Þ

and the continuity conditions

uðiÞr ðriÞ ¼ uðiþ1Þ
r ðriÞ; uðiÞh ðriÞ ¼ uðiþ1Þ

h ðriÞ;
rðiÞrr ðriÞ ¼ rðiþ1Þ

rr ðriÞ; rðiÞrh ðriÞ ¼ rðiþ1Þ
rh ðriÞ; for i ¼ 1; . . . ;N:

ðB:7Þ

From the solution of this boundary value problem we can obtain the
volume averages of the stresses rTotal

ij and rJ
ij, whose formulas are gi-

ven in Appendix C.

Appendix C. Volume averages of stress components

In this appendix we present the volume averages of stress com-
ponents that we need in order to compute the stress concentration
tensors. In every subsection we present the nonzero strains and
stresses in the cylindrical coordinate system. The relation between
the stresses in Cartesian (x,y,z) and cylindrical (r,h,z) coordinate
systems are given by the relations

r1 ¼ rxx ¼ rrr cos2 hþ rhh sin2 h� 2rrh sin h cos h;

r2 ¼ ryy ¼ rrr sin2 hþ rhh cos2 hþ 2rrh sin h cos h;

r3 ¼ rzz;

r4 ¼ ryz ¼ rrz sin hþ rhz cos h;

r5 ¼ rxz ¼ rrz cos h� rhz sin h;

r6 ¼ rxy ¼ ðrrr � rhhÞ sin h cos hþ rrhðcos2 h� sin2 hÞ:

In order to compute the average values, the stresses in the Cartesian
coordinate system should be expressed with respect to r,h,z. The
volume averaged stresses of the entire RVE, rTotal

K

� �
, and of the ‘‘fuz-

zy fiber’’, rJ
K

D E
, are given by

rTotal
K

� �
¼ 1

2pLrN

PN
i¼1

Z L

�L

Z 2p

0

Z r1

ri�1

rK r dr dhdz;

rJ
K

D E
¼ 1

2pLrN�1

PN�1

i¼1

Z L

�L

Z 2p

0

Z r1

ri�1

rK r dr dhdz:

We introduce for all the following cases the notation:

KðiÞj ¼
r

1þnðiÞ
j

i
�r

1þnðiÞ
j

i�1

1þnðiÞ
j

; nðiÞj – � 1;

lnðriÞ � lnðri�1Þ; nðiÞj ¼ �1:

8>><
>>:

WðiÞj ¼ 2nðiÞj CðiÞ13 þ 2CðiÞ23;

XðiÞj ¼ nðiÞj CðiÞ11 þ CðiÞ12

� �
þ CðiÞ12 þ CðiÞ22:

C.1. In-plane bulk modulus

Nonzero strain and stress components
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;

where nðiÞj is given by Eq. (11).
Average stresses (refer to Cartesian system)
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C.2. Axial shear modulus

Nonzero strain and stress components
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where nðiÞj is given by Eq. (19).
Average stresses (refer to Cartesian system)

rTotal
5

� �
¼ 1

r2
N

PN
i¼1

P2
j¼1

DðiÞj NðiÞj KðiÞj ; rJ
5

D E
¼ 1

r2
N�1

PN�1

i¼1

P2
j¼1

DðiÞj NðiÞj KðiÞj ;

where

NðiÞj ¼ nðiÞj CðiÞ55 þ CðiÞ44:

C.3. Axial Young’s modulus and axial stiffness component

Nonzero strain and stress components
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rnðiÞ

j
�1
;

rðiÞhh ¼ KðiÞCðiÞ12 þKðiÞCðiÞ22 þ e0CðiÞ23 þ
P2
j¼1

DðiÞj nðiÞj CðiÞ12 þ CðiÞ22

� �
rnðiÞ

j
�1
; or

rðiÞhh ¼ KðiÞ2 þ
P2
j¼1

DðiÞj nðiÞj CðiÞ12 þ CðiÞ22

� �
rnðiÞ

j
�1
;

rðiÞzz ¼ KðiÞ1 þ
P2
j¼1

DðiÞj nðiÞj CðiÞ13 þ CðiÞ23

� �
rnðiÞ

j
�1
:

where KðiÞ; nðiÞj ; KðiÞ1 and KðiÞ2 are given by Eqs. (26), (27) and (33).
Average stresses (refer to Cartesian system)

rTotal
1

� �
¼ 1

r2
N

PN
i¼1

KðiÞ2 r2
i � r2

i�1


 �
þ
P2
j¼1

DðiÞj XðiÞj KðiÞj

" #
;

rJ
1

D E
¼ 1

r2
N�1

PN�1

i¼1
KðiÞ2 r2

i � r2
i�1


 �
þ
P2
j¼1

DðiÞj XðiÞj KðiÞj

" #
;
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rTotal
2

� �
¼ rTotal

1

� �
; rJ

2

D E
¼ rJ

1

D E
;

rTotal
3

� �
¼ 1

r2
N

PN
i¼1

KðiÞ1 r2
i � r2

i�1


 �
þ
P2
j¼1

DðiÞj WðiÞj KðiÞj

" #
;

rJ
3

D E
¼ 1

r2
N�1

PN�1

i¼1
KðiÞ1 r2

i � r2
i�1


 �
þ
P2
j¼1

DðiÞj WðiÞj KðiÞj

" #
:

C.4. In-plane shear modulus

Nonzero strain and stress components (we refer only to the real
layers, not the effective)

�ðiÞrr ¼
P4
j¼1

DðiÞj nðiÞj aðiÞj rnðiÞ
j
�1 sinð2hÞ; �ðiÞhh ¼

P4
j¼1

DðiÞj aðiÞj � 2
� �

rnðiÞ
j
�1 sinð2hÞ;

2�ðiÞrh ¼
P4
j¼1

DðiÞj 2aðiÞj þ nðiÞj � 1
� �

rnðiÞ
j
�1 cosð2hÞ;

rðiÞrr ¼
P4
j¼1

DðiÞj CðiÞ11nðiÞj aðiÞj þ CðiÞ12aðiÞj � 2CðiÞ12

� �
rnðiÞ

j
�1 sinð2hÞ;

rðiÞhh ¼
P4
j¼1

DðiÞj CðiÞ12nðiÞj aðiÞj þ CðiÞ22aðiÞj � 2CðiÞ22

� �
rnðiÞ

j
�1 sinð2hÞ;

rðiÞzz ¼
P4
j¼1

DðiÞj CðiÞ13nðiÞj aðiÞj þ CðiÞ23aðiÞj � 2CðiÞ23

� �
rnðiÞ

j
�1 sinð2hÞ;

rðiÞrh ¼
P4
j¼1

DðiÞj 2aðiÞj þ nðiÞj � 1
� �

CðiÞ66rnðiÞ
j
�1 cosð2hÞ;

where aðiÞj and nðiÞj are defined from Eqs. (40) and (41).
Average stresses (refer to Cartesian system)

rTotal
6

� �
¼ 1

2r2
N

PN
i¼1

P4
j¼1

DðiÞj UðiÞj KðiÞj ; rJ
6

D E
¼ 1

2r2
N�1

PN�1

i¼1

P4
j¼1

DðiÞj UðiÞj KðiÞj ;

where

UðiÞj ¼ CðiÞ11nðiÞj aðiÞj þ CðiÞ12 aðiÞj � nðiÞj aðiÞj � 2
� �

þ CðiÞ22 2� aðiÞj

� �
þ 2CðiÞ66 2aðiÞj þ nðiÞj � 1

� �
:

C.5. Transverse extension test

Nonzero strain and stress components

�ðiÞrr ¼
P4
j¼1

DðiÞj nðiÞj rnðiÞ
j
�1 cosð2hÞ þ

P6
j¼5

DðiÞj nðiÞj rnðiÞ
j
�1
;

�ðiÞhh ¼
P4
j¼1

DðiÞj 1þ 2aðiÞj

� �
rnðiÞ

j
�1 cosð2hÞ þ

P6
j¼5

DðiÞj rnðiÞ
j
�1
;

2�ðiÞrh ¼
P4
j¼1

DðiÞj �2þ nðiÞj aðiÞj � aðiÞj

� �
rnðiÞ

j
�1 sinð2hÞ;

rðiÞrr ¼
P4
j¼1

DðiÞj CðiÞ11nðiÞj þ CðiÞ12 þ 2CðiÞ12aðiÞj

� �
rnðiÞ

j
�1 cosð2hÞ

þ
P6
j¼5

DðiÞj CðiÞ11nðiÞj þ CðiÞ12

� �
rnðiÞ

j
�1
;

rðiÞhh ¼
P4
j¼1

DðiÞj CðiÞ12nðiÞj þ CðiÞ22 þ 2CðiÞ22aðiÞj

� �
rnðiÞ

j
�1 cosð2hÞ

þ
P6
j¼5

DðiÞj CðiÞ12nðiÞj þ CðiÞ22

� �
rnðiÞ

j
�1
;

rðiÞzz ¼
P4
j¼1

DðiÞj CðiÞ13nðiÞj þ CðiÞ23 þ 2CðiÞ23aðiÞj

� �
rnðiÞ

j
�1 cosð2hÞ

þ
P6
j¼5

DðiÞj CðiÞ13nðiÞj þ CðiÞ23

� �
rnðiÞ

j
�1
;

rðiÞrh ¼
P4
j¼1

DðiÞj �2þ nðiÞj aðiÞj � aðiÞj

� �
CðiÞ66rnðiÞ

j
�1 sinð2hÞ;

where aðiÞj and nðiÞj are defined from equations (B.2), (B.3) and (B.5).
Average stresses (refer to Cartesian system)

rTotal
1

� �
¼ 1

r2
N

PN
i¼1

1
2
P4
j¼1

DðiÞj MðiÞ
j KðiÞj þ

P6
j¼5

DðiÞj XðiÞj KðiÞj

 !
;

rJ
1

D E
¼ 1

r2
N�1

PN�1

i¼1

1
2
P4
j¼1

DðiÞj MðiÞ
j KðiÞj þ

P6
j¼5

DðiÞj XðiÞj KðiÞj

 !
;

rTotal
2

� �
¼ 1

r2
N

PN
i¼1
�1

2
P4
j¼1

DðiÞj MðiÞ
j KðiÞj þ

P6
j¼5

DðiÞj XðiÞj KðiÞj

 !
;

rJ
2

D E
¼ 1

r2
N�1

PN�1

i¼1
�1

2
P4
j¼1

DðiÞj MðiÞ
j KðiÞj þ

P6
j¼5

DðiÞj XðiÞj KðiÞj

 !
;

rTotal
3

� �
¼ 1

r2
N

PN
i¼1

P6
j¼5

DðiÞj WðiÞj KðiÞj ; rJ
3

D E
¼ 1

r2
N�1

PN�1

i¼1

P6
j¼5

DðiÞj WðiÞj KðiÞj ;

where

MðiÞ
j ¼ CðiÞ11nðiÞj þ CðiÞ12 1þ 2aðiÞj � nðiÞj

� �
� CðiÞ22 1þ 2aðiÞj

� �
� 2CðiÞ66 nðiÞj aðiÞj � aðiÞj � 2

� �
:
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